Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/beta-catenin signalling.

نویسندگان

  • A S Rao
  • N Kremenevskaja
  • J Resch
  • G Brabant
چکیده

BACKGROUND Lithium, clinically used in the treatment of bipolar disorders, is well known to induce thyroid growth. However, the mechanism involved is only incompletely characterized. Although it is conventionally believed that thyroid proliferation depends on the thyroid-stimulating hormone (TSH)/cAMP/cAMP response element binding protein (CREB) pathway, recent data indicate that Wnt/beta-catenin signalling may be of critical importance. In other cell types lithium activates canonical Wnt signalling by GSK-3beta inhibition, which in turn stabilizes cytosolic free beta-catenin. Here we investigated the potential modulation of Wnt/beta-catenin signalling under lithium treatment in primary and neoplastic human thyrocytes. METHODS Primary (S18) and neoplastic (NPA, FTC133) thyrocytes treated with and without LiCl were analysed using Western blotting, immunoprecipitation, reporter-gene assay, MTT proliferation assay and transfection studies. RESULTS LiCl dose-dependently inhibited GSK-3beta, stabilized free beta-catenin and inhibited beta-catenin degradation. Furthermore, LiCl altered the assembly of adherens junction by upregulating the E-cad-herin repressor, Snail, and downregulated E-cadherin expression. At a dose of 5 mM, LiCl significantly increased the proliferative potency of thyrocytes, which appeared to be mediated by beta-catenin, since nuclear beta-catenin stimulated T-cell factor/lymphoid enhancer factor (TCF/LEF)-mediated transcription and upregulated downstream targets like cyclin D1. To characterize the specificity of Wnt/beta-catenin-driven thyrocyte proliferation, we transfected primary thyrocytes and FTC133 cells with dominant negative TCF4 to block Wnt-dependent pathways or with dominant negative CREB to inhibit the TSH/cAMP cascade. In cells transfected with dominant negative CREB lithium-stimulated proliferation was unchanged whereas blocking Wnt/beta-catenin by dominant negative TCF4 reduced proliferation by approx. 50%. CONCLUSION Our data indicate that Wnt/beta-catenin signalling is of major importance in the control of lithium-dependent thyrocyte proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta

Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC producti...

متن کامل

Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration.

Satellite cells represent the stem cell population of adult skeletal muscle. The molecular mechanisms that control the proliferation of satellite cells are not well understood. In this study, we show that in response to injury, myofibres activate Wnt ligand transcription and activate a reporter cell line that is sensitive to the canonical Wnt-signalling pathway. Activated satellite cells on iso...

متن کامل

The protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway

Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...

متن کامل

Epidermal b-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages

Sustained epidermal Wnt/b-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-b) signalling mediate the dermal changes. Pharmacological inhibiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of endocrinology

دوره 153 6  شماره 

صفحات  -

تاریخ انتشار 2005